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Sinc-Nystrom Method for Numerical Solution of 
One-Dimensional Cauchy Singular Integral Equation 

Given on a Smooth Arc in the Complex Plane* 

By Bernard Bialecki**and Frank Stenger 

Abstract. We develop a numerical method based on Sinc functions to obtain an ap- 
proximate solution of a one-dimensional Cauchy singular integral equation (CSIE) over 
an arbitrary, smooth, open arc L of finite length in the complex plane. At the outset, we 
reduce the CSIE to a Fredholm integral equation of the second kind via a regularization 
procedure. We then obtain an approximate solution to the Fredholm integral equation 
by means of Nystrbm's method based on a Sinc quadrature rule. We approximate the 
matrix and right-hand side of the resulting linear system by an efficient method of com- 
puting the Cauchy principal value integrals. The error of an N-point approximation 

converges to zero at the rate O(e-CN1/2 ), as N -* oo, provided that the coefficients 
of the CSIE are analytic in a region D containing the arc L and satisfy a Lipschitz 
condition in D. 

1. Introduction. In this paper we consider an application of the Sinc function 
method to the approximate solution of a Cauchy singular integral equation taken 
over a smooth, open arc L of finite length in the complex plane. The equation to 
be solved on L has the form 

(1.1) aw + bSw + Kiw = fi, 

where for t E L, 

(1.2) Sw(t) = f W(T td 

(1.3) Kjw(t) = f k1 (t, r)w(r) dr. 

The integral appearing in (1.2) is a Cauchy principal value integral defined by 

(1.4) 
w (fr) dr 

= lim 
I (10 dr 

(. )J -t i-D+4O T- t 

where Le is the part of L obtained by deleting from L all those points which are 
within a distance E from t. The complex functions a, b, fi and k1 in Eq. (1.1) are 
assumed to be given on L and it is required to find w, or an approximation to w. 
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Following Muskhelishvili [12, ?106] we assume that a, b, k1 and fi satisfy a Lip- 
schitz condition on L (k1 satisfies a Lipschitz condition with respect to both vari- 
ables) and that the condition 

(1.5) r(t)a 2(t) -b 2(t) $ 0 

is satisfied on the closure L of L. We look for solutions w of Eq. (1.1) belonging to 
the class H* [12, ?77] (see also Definition 3.1 of this paper). The class H* consists 
of all functions which satisfy Lipschitz conditions everywhere on L except at the 
endpoints, where integrable singularities are allowed. 

Let X, and Z(t) be respectively the index and the fundamental function of Eq. 
(1.1) corresponding to the class ho [12, ?109] (see also Subsection 2.3 of this paper). 
Then it is well known [12, ?109] that Eq. (1.1) is equivalent (in the sense that 
solutions w E H* are being sought) to the following equation 

(1.6) w+ aKjw-- ( S )j = f2i 

where 

(1.7) f2 - f ?s(f' + bZr-i r r '\ZJ r 

and where in (1.7) P,_1 is an arbitrary polynomial of degree at most X - 1 (P. 1- 0 
if ', < 0), provided that when X, < 0 the additional conditions 

(1.8) It 1-fi)(t)dt=0 = 
Z(t) 

are satisfied. Interchanging the order of integration in the last term on the left-hand 
side of Eq. (1.6), we rewrite Eq. (1.6) in the form [12, ?111] 

(1.9) w-K2w=f2, 

where 

(1.10) K2w(t) = j [ r(t)i f k1(u')/Z(u) du - (t)kl(tr) w(r) dr. 

As it was observed in [3], [4], [5], [6], [8], [9], rather than solving Eq. (1.9) for 
w e H*, which may be unbounded at either or both endpoints of L, it is practically 
more convenient to solve for the function 

rw (1.11) g9= 
rw 

which turns out to be bounded and continuous on L. Making use of the substitution 
(1.11), Eq. (1.9) becomes 

(1.12) (I-K)g=f, 

where I is the identity operator and K is a Fredholm integral operator defined by 

(1.13) Kg(t) = f k(t, r)g(r) dr. 

The kernel k(t,) in (1.13) is defined by 

(1.14) k(tr) = -(r) () 
k. 

1 ' f ) ( dua(t)kj(tj7)], r L u -t 
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and the term f on the right-hand side of (1.12) is given by 

(1.15) f = af-bS (f + bPx 

The Fredholm integral equation of the second kind, (1.12)-(1.15), will be the start- 
ing point for the numerical method of this paper. We shall solve Eq. (1.12)-(1.15) 
approximately by means of Nystrdm's method based on a Sinc quadrature rule. 

The paper has been organized into seven sections and two appendices. First, 
in Section 2 we recall some necessary background material related to the theory 
of the singular integral equation (1.1), so that the paper could be read indepen- 
dently. However, throughout the paper we quite frequently refer the reader to 
Muskhelishvili [12] for details of proofs. In Section 3 we examine closely the inte- 
gral equation (1.12)-(1.15). First we show that the function g defined by (1.11) is 
indeed a solution of Eq. (1.12)-(1.15) which is continuous and bounded on L for 
any solution w E .H* of Eq. (1.1). Next we establish some properties of the kernel 
k and right-hand side f given by the formulas (1.14) and (1.15), respectively. In 
particular, we establish analyticity of k in some domain D containing L under the 
assumption that the coefficients of Eq. (1.1) are analytic in D. We also determine, 
for fixed t on L, the rate at which the kernel k(t, r) becomes infinite as the second 
variable r approaches either of the endpoints of L. These properties will later play 
an essential role in developing approximate methods for solving Eq. (1.12)-(1.15). 
In Section 4, which can be viewed as an independent part of the paper, we present 
Nystrdm's method based on a Sinc quadrature rule for the numerical solution of the 
general Fredholm integral equation of the second kind given by (1.12), (1.13). Un- 
der appropriate assumptions on the kernel k(t, r) of the operator K and right-hand 
side f, we show that the error of convergence has exponential decay with respect 
to the number of nodes used in the quadrature rule. It turns out that this method 
is well suited for finding an approximate solution of Eq. (1.12)-(1.15), provided 
that we could accurately evaluate the kernel k and right-hand side f (see (1.14) 
and (1.15)), which in general are not known explicitly. Therefore, in Section 5 we 
first develop some effective quadrature formulas for the approximate evaluation of 
Cauchy principal value integrals given by (1.2). Finally, in Section 6 we combine re- 
sults of the previous sections to describe an algorithm for the approximate solution 
of Eq. (1.12)-(1.15). We use formulas from Section 5 to evaluate the coefficients of 
the matrix and the components of the right-hand side vector in the linear system 
resulting from Nystrbm's method, and we show that the error is still of exponential 
decay. The final section contains two numerical examples on which our algorithm 
was tested. 

We would like to stress that it is, of course, this exponential (rather than alge- 
braic) rate of convergence which makes this method and the general Sinc function 
technique in numerical analysis so attractive (see the review paper [13]). Other 
known methods of solving Eq. (1.1) are based on collocation or Galerkin schemes. 
The rates of convergence of the error in these methods are of the order Q(n-C), 
where n denotes the number of function evaluations or basis functions, and where c 
depends on the number of derivatives of the coefficients in Eq. (1.1) that exist and 
are uniformly bounded on L (see [3], [4], [5], [8], [9], [10], [11], [14]). In addition, 
all other methods seem to deal only with singular integral equations (1.1) taken 
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over the interval (-1,1), whereas the method of this paper can be applied to more 
general arcs L in the complex plane. 

Finally, we want to point out that the first important attempt to provide a foun- 
dation for the application of Sinc methods to the approximate solution of Eq. (1.1) 
taken over the interval (-1,1) was made in [6], where the use of a somewhat compli- 
cated projection method was suggested. However, in the course of experiments and 
trials the authors have found that the Nystrbm method applied to the numerical 
solution of Eq. (1.12)-(1.15) is simple to implement, and it allows for carrying out 
a complete convergence and error analysis. 

2. Preliminaries. In this section we state some definitions and results from 
the theory of singular integral equations, making this paper self-contained (for more 
details we refer the reader to Muskbelishvili's book [12]). We recall such notions as 
special and nonspecial ends of an arc L, the index and the fundamental function of 
Eq. (1.1) corresponding to the class ho. 

2.1. An Arc L and the Class of Functions Lip(L). Throughout the paper we 
shall be assuming that L = L(cl, c2) is a smooth, open arc of finite length in 
the complex plane with ends c1, c2 and direction from c1 to c2 (see [12] for precise 
definition and properties of such arcs). Here we want to point out that according to 
this definition, the points c1, c2 do not belong to L. The closure of arc L = L(ci, c2) 
will be denoted by L, i.e., L = L U {c1, c2}. 

Let us recall that a complex function w(t) defined on L satisfies a Lipschitz 
condition on L with exponent ,u (O < ,u < 1) if for all points t1, t2 E L we have 

(2.1) Iw(tl) - w(t2)1 <_ Clt1 - t2 1i 

where C is a positive constant independent of t1 and t2. We write w E Lip(L) or 
w E Lipg (L) if we wish to emphasize the exponent ,u, and we shall say that w is a 
function of the class Lip(L) or Lip,(L), respectively. Let us note that if w E Lip(L) 
then w can be uniquely defined at the ends c1 and c2, so that w E Lip(L). We shall 
always assume this to be the case when talking about w E Lip(L). 

2.2. Special and Nonspecial Ends of L. Let the coefficients a and b of Eq. (1.1) 
belong to Lip(L) and let the following condition be satisfied: 

(2.2) r(t) _ a2(t) - b2(t) , t E L. 

For t E L let us define the function G by 

(2.3) G(t) - a(t) - b(t) 
a(t) +b(t)'1 

and let log G(t) be any definite one-valued branch of the logarithm which varies 
continuously on L. Let us assume that %j, f, j = 1,2, are real numbers such that 

(2.4) ac + if3 = T lIg G(cr) 

where the minus sign is taken for j = 1 and plus sign for j = 2. Let integers Aj be 
selected so that 

(2.5) -< aj + A3< O j =1,2. 

If -1 < aj + Aj < 0, then the corresponding end cj is called nonspecial. If 
cj + A1 = 0 or, equivalently, if "-j is an integer, then Cj is a special end. Let us 
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observe that if cj is a special end, then fX = 0 if and only if b(cj) = 0. Also, if 

Ima(cj) = Reb(cj) = 0, then cj is a special end if and only if b(cj) = 0. 
2.3. The Index and Fundamental Function of Class h0. Let integers Aj be defined 

by (2.5). Then the number 

2 

(2.6) ' E - 
j=1 

is called the index of Eq. (1.1) corresponding to the class ho. Let us recall (see [12, 
?109] for details) that all possible solutions w E H* of Eq. (1.1) can be divided into 
classes, depending on whether or not w is to remain bounded in neighborhoods of 
one or more of the nonspecial ends of L. The class ho is the class for which no 
boundedness condition is imposed in any neighborhood of a nonspecial end of L. 
Thus this class actually consists of all solutions w of Eq. (1.1) which belong to the 
space H*. 

Let 
2 

(2.7) 11(z) = J7(Z - cj)A3, 
j=1 

(2.8) IF(z) = 21 log G(r) dr, zAL 

and let us set 

(2.9) X(z) = 1I(z)er(z) z VT. 

Then for t E L the fundamental function Z(t) of Eq. (1.1) corresponding to the 
class ho is defined by 

(2.10) Z(t) = [a(t) + b(t)]X+(t) = [a(t) -b(t)]X-(t) 

where X+ (t) and X- (t) denote limits of X(z) as z approaches t from the left and 
right of L, respectively. By the Plemelj formulas [12, ?17] it is seen from (2.9) and 
(2.10) that 

(2.11) Z(t) = [a(t) + b(t)]e 2 log G(t) II(t)er(t) = [a(t) - b(t)]ei log G(t)-I(t)er(t) 

where for t E L, 

(2.12) IF(t) = l f Iog G(r) dr 

It can also be shown [12, ?107] that if we set 

(2.13) -yj = oij + Aj + i'33, j = 1, 2, 

where aj, fj, Aj are defined by (2.4) and (2.5), then 

2 

(2.14) Z(t) = w(t) 17 (t - c1)"', 
j=1 

where w is a function of the class Lip(L), w(t) $& 0 on L, and where (t - c,)5' is 
any definite one-valued branch of this function which varies continuously on L. It 
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follows from (2.14) that the function Z-1 E Lip(L') for any closed part L' of L. 
It is clear that if cj is a nonspecial end or special end with b(cj) = 0, then Z-1 
also satisfies a Lipschitz condition on L near c3 (in the first case Z-1(cj) = 0). If, 
however, c. is a special end and b(cj) 0 0, then Z-1 no longer satisfies a Lipschitz 
condition on L near c1, although it is bounded there. 

2.4. The Fundamental Function in the Case of Real a and Purely Imaginary b. 
Let us assume that 

(2.15) Ima(t) = Reb(t) = 0, t E L, 

and let us introduce a continuous function E), defined on L by 

(2.16) e((t) = 1-arg[a(t) + b(t)] + M, 
IF 

where M is an integer. We note that 

(2.17) arg[a(t) + b(t)] = arctan (Im (t)) + 7rm(t), 

where -7r/2 < arctan x < 7r/2 for x E R and where m(t) takes on only integer 
values and may have discontinuities at zeros of a. It follows from (2.16) and (2.3) 
upon setting 

(2.18) log G(t) = -27wiO(t) 

that we obtain on L a definite, one-valued and continuous logarithm of the function 
G. Simple calculations, (2.16) and (2.18) also show that 

(2.19) e 2 log G(t) - (1)M a(t) + b(t) 
ja(t) + b(t)1V 

Therefore, from (2.11), (2.12), (2.7), (2.18), (2.19), (2.2) and (2.15) we obtain 

2 

(2.20) Z(t) = (-1)Mrl/2(t) JJ(t _ C)Aje- fL e9() dr/(r-t) 

J=1 

By (2.4), (2.5) and (2.18) we see that integers A., j = 1, 2, appearing in (2.20) can 
now be chosen so that 

(2.21) -1 < Al + 6(cj) < 0, 

where E) is defined by (2.16), the plus sign is taken for j = 1 and the minus for 
j = 2. Let us note that if we set M = 0 and omit the term r1/2 on the right-hand 
side of (2.20), then we obtain a function which is called the fundamental solution of 
Eq. (1.1) by Dow and Elliott [3]. As can be seen from (2.21), the introduction of the 
integer M in (2.16) allows for a broader choice of A3, which is of some importance 
if the formula (2.20) is used for computational purposes. 

3. Properties of the Integral Equation (1.12)-(1.15). In this section we 
show that the function g given by (1.11), which is a solution of Eq. (1.12)-(1.15), 
is bounded and continuous on L. We also establish some important properties 
of the kernel k and right-hand side f given by the formulas (1.14) and (1.15), 
respectively. In particular, we show that k and f are analytic functions (k with 
respect to each variable) in some domain D containing L if the coefficients of the 
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singular integral equation (1.1) are analytic in D. We also determine the rate at 
which, for fixed t from the arc L, the kernel k(t, r) becomes infinite as the second 
variable r approaches either of the endpoints of L. These facts will be essential for 
the development of a numerical method in Secfion 4. 

3.1. Boundedness and Continuity of g. As was stated in Section 1, the solution 
w of Eq. (1.1) is being sought in the class H*. 

Definition 3.1 [12, ?77]. The function w(t), given on an arc L = L(ci,c2) such 
that w e Lip(L') on every closed part L' of L, and near an endpoint c = c1 or c2 
of the form 

w* (t) 
(3.1) w(t) = (t),' < a <O1, 

where w* E Lip(L), is said to belong to the class H*. 
We already mentioned in Section 1 that instead of solving Eq. (1.1) for w E H* 

we shall look for the function g related to w by (1.11). 

THEOREM 3.2. Let a, b, k1, fi belong to Lip(L) (k1 with respect to both variables) 
and let condition (1.5) be satisfied on L. Let X, and Z(t) be respectively the index 
and fundamental function of Eq. (1.1) corresponding to the class ho. Then for 
any solution w E H* of Eq. (1.1) the function g defined by (1.11) is continuous 
and bounded on L. Furthermore, the function g is a solution of Eq. (1.12)-(1.15), 
where in (1.15) P,_1 is a polynomial of degree not greater than X, - 1 (P,_1 _ O, if 
K < 0). 

Proof. It was shown in Section 1 that g satisfies Eq. (1.12)-(1.15). Also, g is 
continuous on L since Z is continuous on L (see Subsection 2.3). Thus it remains 
to prove that g is bounded on L. Rewriting Eq. (1.1), we have 

(3.2) aw + bSw = fo, 

where fo = fi - K1w. It is easy to show that fo E Lip(L). Therefore, from (1.6), 
(1.7) and (1.11) we obtain 

(3.3) 9= Z -bS (Z) +bP1. 

It is obvious from (2.14), (2.13) and (2.5) that the first and last terms on the right- 
hand side of (3.3) are bounded on L. Furthermore, S(fo/Z) E Lip(L') for every 
closed part L' of L. Hence, let us examine the behavior of S(fo/Z) on L near the 
endpoints cj, j = 1, 2. If c1 is a nonspecial end, then (fo/Z)(cj) = 0. It then follows 
from (2.14), (2.13), (2.5) and the theorem in [12, ?19, p. 46] that S(fo/Z) satisfies 
a Lipschitz condition on L near c1 and hence is bounded there. On the other hand, 
if c. is a special end, then from the same equations of Section 2 and (29.7), (29.8) 
in [12, ?29] we observe that for t E L and t in a neighborhood of cj we have 

(3.4) S (f) (t) = C, log(t - c1) + si (t) 

if b(cj) = 0 and 

(3.5) S (f) (t) - (t _)i + s2(t) 
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if b(cj) :A 0. In (3.4) and (3.5), C1,C2 are constants and si(t) and s2(t) are functions 
that satisfy Lipschitz conditions on L near cj. If b(cj) = 0, then we see from (3.4), 
50 in [12, ?6] and 1? in [12, ?7] that bS(fo/Z) satisfies a Lipschitz condition on L 
near c3 and hence is bounded there. If b(cj) :A 0, then (3.5) implies boundedness 
of S(fo/Z) on L near cj, and Theorem 3.2 follows. E 

The proof of Theorem 3.2 and results from Subsection 2.2 yield the following 
corollary. 

COROLLARY 3.3. If Ima(cj) = Re b(cj) = 0 for j = 1, 2, in particular, if a(t) 
is real and b(t) purely imaginary on L, then g E Lip(L). 

3.2. Properties of the Kernel k of (1.14) and the Right-Hand Side f of (1.15). 
Let us assume that D is a bounded, simply connected domain in the complex plane 
such that D contains L = L(ci, c2) and such that the points c1, c2 are boundary 
points of D. Let D+ and D- denote the parts of D lying respectively to the left 
and right-hand sides of L. Furthermore, let Q be the union of two sets, L x D and 
D x L. Throughout the paper, H(D) will represent the set of all analytic functions 
in D and 0(D) will denote the set of all continuous functions on the closure D of 
D. In what follows, whenever we say that a function f defined on L is in H(D) 
and satisfies some additional properties on D (such as, for example, f is bounded 
on D), we will mean that f has an analytic extension to D with these properties. 
A similar convention will apply to a function of two variables defined on L x L, if 
one of the variables is fixed and the function is considered as a function of only the 
other variable. 

Assumption 3.4. Let a, b E Lip(L) n H(D) n 0(D) and let condition (1.5) be 
satisfied for all t E D. 

LEMMA 3.5. Let Assumption 3.4 be satisfied, let Z(t) be the fundamental func- 
tion of Eq. (1.1) corresponding to the class ho and let aj, Aj, j = 1, 2, be defined 
by (2.4) and (2.5). Then Z,Z-1 E H(D), Z-1 is bounded in D and there exists a 
constant C > 0 such that 

(3.6) 1Z(Z)j <_ 0lZ - C1 z- C21)'f-11 z E Di 

where 

(3.7) af = 1 + min (a. + Aj) > 0. 
j=1,23 

Proof. Let us recall that the fundamental function Z(t) is defined for t E L by 
(2.10). If we extend Z to D by the formula 

(3.8) Z ( ) =X (Z) [a(z) +b(z)], z cD+, (3.8) 
~~~~~~[a(z) - b(z)], z E D-, 

where X(z) is given by (2.9), then from the theorem on analytic continuation we 
see that Z E H(D). Furthermore, Z-1 E H(D) since Z :$ 0 on D+ U D- by (3.8), 
(1.5), (2.9), and likewise Z :$ 0 on L by (2.14). It is clear that in order to prove 
that Z-1 is bounded in D it will be sufficient to show that Z1 is bounded in D 
near the points c;, j = 1, 2. Proceeding similarly as in [12, ?79], it is easy to see 
that for z E D\L and z near c;, 

(3.9) X(z) = (z - )5 Y (z) 
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where -yj is given by (2.13), (t - cj)"3 is any branch of this function defined in the 
complex plane cut along L, and Y(z) is some function which is bounded and stays 
away from zero in the neighborhood of cl. Boundedness of Z-1 in D near cl and 
the inequality (3.6) now follow from (3.8) and (3.9). E 

Assumption 3.6. Let a, b be as in Assumption 3.4 and in addition let us assume 
that there exist positive constants C and Ullj such that 

(3.10) lb(z) l < Clz-c cj3l, z E D, 

whenever c; is a special end of L, and b(c1) = 0. 
We note that if both ends of L are nonspecial, then Assumption 3.6 reduces to 

Assumption 3.4. 
Assumption 3.7. In addition to satisfying a Lipschitz condition with respect 

to both variables on L x L, let us assume that kl(w,) E H(D) for all r E L, 
k1 (t, ) E H(D) for all t E L, k1 (t, r) is bounded on Q and that there exist constants 
C > 0 and 0 < ,u < 1 such that 

(3.11) jki(t, r) - ki(t2,r)j < Ct1 -t 

for all t1,t2 E L and all r E D. 

LEMMA 3.8. Let Assumptions 3.6 and 3.7 be satisfied and for (t, T) E L x L let 
H(t, r) be defined by 

(3.12) H(tr) = b(t) f 1(u T)/Z (u) du, 

where Z is the fundamental function of Eq. (1.1) corresponding to the class ho. 
Then H(., r) E H(D) for all r E L, H(t, ) E H(D) for all t E L and H(t,) is 
bounded in Q. 

Proof. Two cases need to be considered. 
I. The case when r E L. For fixed r E L let the function H(t, r), given for t E L 

by (3.12), be extended to D with respect to t as follows: 

(3.13) H(tj) b~t){ -7rih(t, r) + )(t, r), t E D+, 

where 

(3.14) h(t, T) = ki (tj) r Z (t) 
and where 

(3.15) (t ) = f h(u, r) du 

By Lemma 3.5 we know that Z-1 E H(D) and that Z-1 is bounded in D. Hence 
h(.,ir) E H(D) and h(t,ir) is bounded for t E D. The latter implies that b(, r) is 
analytic in D+ U D-. Thus H(., r) is also analytic in D+ U D-. Next, applying 
Plemelj's formulas [12, ?17] to b(t, i) with respect to the variable t, we conclude 
via analytic continuation that H(., r) E H(D). To prove that H(t, r) is bounded 
on D x L, we note that it is sufficient to show boundedness of H(t, r) for r E L, 
t E D+ U D- and t being near c, where c is either of the endpoints c1, c2 of L. 
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Boundedness for the remaining t will then follow from the maximum principle. Also, 
since b(t)h(t, r) is bounded on D x L, we only need to consider the boundedness 
of b(t)b(t, r). The following argument will simplify our considerations. Let L be 
divided into two parts, L1 and L2, such that c E L1, and such that L2 is at a 
finite distance from c. Let us split b(t, r) into the sum of two integrals, b1i(t,r) 
and 2 (t, i), which are taken respectively over L1 and L2. It is obvious that only 
b(t)41 (t, r) has to be examined. Let us first assume that c is either a nonspecial 
end, or else it is a special end with b(c) :$ 0. Then it follows from (2.14), (2.13) 
and 10, 20 of Appendix A that b(t, r) is bounded for all r E L, t E D+ U D- and 
t being in the neighborhood of c. On the other hand, if c is a special end with 
b(c) = 0, then the boundedness of b(t)>(t, r) for the same r and t follows from 10 

in Appendix A and the inequality (3.10). 
II. The case when t E L. Let us define '(t, r) for fixed t E L and r E D, by 

(3.16) '(tr) f h(u, r) du 

where h is given by (3.14). It is clear from (3.12) and (3.16) that in order to prove 
that H(t,) E H(D) and that H(t, r) is bounded on L x D, it will suffice to show 
that I(t,.) E H(D) and that b(t)41(t, i) is bounded on L x D. First we note by 
(12.4) of [12, ?12] that (3.16) can be rewritten as 

(3.17) '(t, r) = 'I (t, T) + h(tr) r ri + log c2 - t 

where 

(3.18) ''(tr) = h(u, ) h(t, () du. 

It follows from (3.14) and (3.11) that for fixed t E L the integrand in (3.18) can be 
bounded from above, independently of r E D, by a function that is integrable over 
L with respect to u. Thus by Lebesgue's dominated convergence theorem, '' (t, ) E 
C(D). Now let A be a closed triangle such that A C D. Since h(t,.) E H(D), it 
follows by Fubini's theorem that f,9A '' (t, r) d- = 0. and thus Morera's theorem 
implies that 'I1 (t,.) E H(D). Therefore, we conclude by (3.17) that 'IQ(t,.) E H(D). 
It remains to prove that b(t)'I'(t, -) is bounded on L x D. It can be seen from (3.17) 
and (3.18) that it will be sufficient to show that b(t)'IQ(t, r) is bounded for all r E D, 
t E L and t being in the neighborhood of c, where c is either of the endpoints cl, C2 

of L. But this follows from (3.16), (3.11) and 30, 40 in Appendix A, by considering, 
as in case I above, the possibilities of c being a nonspecial end, a special end with 
b(c) $ 0 or a special end with b(c) = 0. 5 

THEOREM 3.9. Let Assumptions 3.6 and 3.7 be satisfied and let the kernel 
k(t,r) of the operator K of (1.13) be given by (1.14), for (t,r) E L x L. Then 
k(., i) E H(D) for all i E L and k(t, ) E H(D) for all t E L. Furthermore, there 
exists a constant C > 0 such that 

(3.19) 1 k(t, ) I <- C(Ir - C1I 1- C21)-a1, (tjr) E Q. 

where af > 0 is given by (3.7). 

Proof. The proof of Theorem 3.9 follows directly from (3.6) and Lemma 3.8. O 
Assumption 3.10. Let fi E Lip(L) n H(D) and let f be bounded in D. 
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THEOREM 3. 1 1. Let Assumptions 3.6 and 3.10 be satisfied and let the right- 
hand side f of Eq. (1.12) be given by Eq. (1.15). Then f E H(D) and f is bounded 
in D. 

Proof. By Lemma 3.5, Z-1 E H(D) and Z-1 is bounded in D. Hence it is seen 
from (1.15) that we only need to consider the term bS(f1/Z). But analyticity and 
boundedness in D of this term follow from Lemma 3.8 upon setting k1 (t, T) = fi (t) 
for(t,r) L. E 

4. Nystrom's Method Based on a Sinc Quadrature Rule for the Nu- 
merical Solution of Fredholm Integral Equation (1.12)-(1.15). First, at 
the beginning of this section we shall recall briefly some definitions and results 
from the numerical theory of Sinc functions (see also [13]). Next, in Subsection 
4.2 we present Nystrdm's method based on a Sinc quadrature rule to obtain an 
approximate solution of the integral equation (1.12), (1.13). We want to emphasize 
that the results of Subsection 4.2 are independent of the rest of this paper and 
can be used for the numerical solution of a general Fredholm integral equation of 
the second kind given by (1.12), (1.13). Finally, in Subsection 4.3 we show how 
the method of Subsection 4.2 can be applied to obtain an approximate solution of 
Eq. (1.12)-(1.15), which was derived from the singular integral equation (1.1) via 
a regularization process. 

4.1. The Sinc Quadrature Rule. Let Z, R, C denote, respectively, the set of all 
integers, the set of real numbers and the set of complex numbers, i.e., Z = {rn: n = 
O? ?1,... }, R = (-oo, oo), C z = x + iy: x G R, y G R}. Let d > O, and let us 
define Dd by 

(4.1) Dd ={Z E C: JImZ < d}. 

Definition 4.1. Let D be a simply connected, bounded domain in the complex 
plane C with boundary OD. Let c1, c2 (cl $ c2) be boundary points of D and let 
X be a conformal map of D onto Dd (see (4.1)) such that 0(cl) = -oc, q(c2) = oc. 
Let 0-1 denote the inverse map of X and let the smooth open arc of finite length 
L = L(c 1, c2) be given by 

(4.2) L = {X-&1 (x): x G R}. 

In what follows, the set of all complex analytic functions in D will be denoted 
by H(D). 

Definition 4.2. Let the domain D be defined as in Definition 4.1. Then B(D) 
will represent the family of all functions F G H(D) such that 

(4.3) 
/(Lx 

I F(z)dzl ,0 as x - oo, 

(4.4) N (F, D) =-liminf| JF(z) dzj < oo, 
yar-d- - LV 

where for x G R and 0 < y < d, 

(4.5) L = {z= x+iy:-d <y<d}, 

(4.6) Ly = {z = x ?iy:x G R}. 

The following result, obtained by Stenger [13, Theorem 4.4], will be of impor- 
tance. 
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THEOREM 4.3. Let F E B(D) and let there exist positive constants C and al 
such that 

(4.7) IF(t)l < Cj0'(t)je-a10(01, t E L. 

For a positive integer N choose h = [27rd/(aN)]1/2 and set z =-1 (nh), n = 

-N(1)N. Then 

(4.8) JF(t) dt - h F <() <e (2 daN) [ - N(FD) + - 
q$'(Zn) e-(2,7rdaN) 1/2 a 

We shall refer to the summation formula in (4.8) as a Sinc quadrature rule. 
4.2. Nystrdm's Method Based on a Sinc Quadrature Rule for the Numerical 

Solution of the General Fredholm Integral Equation of the Second Kind. Notations 
introduced in Subsection 4.1 will be used in this subsection. We shall assume in 
what follows that the domain D, the arc L = L(ci, C2) and the map q are given as 
in Definition 4.1. One more definition will also be useful. 

Definition 4.4. Let X be the Banach space of all continuous and bounded com- 
plex functions defined on L normed with the sup norm, i.e., for g E X, 

(4.9) 11gl~x = sup 1g(t)1. 
tEL 

For g E X and t E L, let 

(4.10) Kg(t) = j k(t, r)g(r) dT 

be a bounded operator from X to X, i.e., IIKII < oc, for which (I - K)-1 exists on 
X and hence is bounded. Then, for given f E X, the equation 

(4.11) (I-K)g = f 

has a unique solution g E X which will be found approximately by means of 
Nystrbm's method. For given positive integer N, h > 0, g E X and t E L, let 

KNg be defined by 

(4.12) KNg(t) = h A k ( z) g(zn), 

where 

(4.13) Zn = /-1(nh). 

Then the Nystr6m method for solving Eq. (4.11) is to find a solution gN E X of 

the equation 

(4.14) (I - KN)gN = f 

We shall show that under certain assumptions on k(t, r), Eq. (4.14) has a unique 
solution for N sufficiently large, and we shall bound the error 9- 9Ng X 

LEMMA 4.5. Let the following conditions be satisfied: 
(a) k(.,r) E H(D) for allr E L; 
(b) there exist positive constants C and a such that foi all t E D and all r E L, 
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(c) let K and KN be defined by (4.10) and (4.12), respectively. 
Then for any g E X the functions Kg(t) and KNg(t) belong to H(D); moreover, 

20 
(4.16) sup Kg(t)l < -H lgix, 

tEDa 

(4.17) sup IKNg(t)l ? C (h + -)lglx. 

Proof. For g E X and t E D we have from (4.10) and (4.15) that 

IKg(t)I < |Ik(t, r)g(r) drI < CIIgIlx/ e- leI (7) IIO X(T) dr 

(4.18) L 
0 Laxl 

= Cllglx f e-IXI dx, 
-00 

and thus (4.16) follows. It can also be seen from (4.18) that k(t, r)g(r) is bounded 
from above, independently of t, by a function integrable over L. Hence by Lebesgue's 
dominated convergence theorem, Kg(t) is continuous in D. Next, applying Fubini's 
theorem, we also see that for any closed triangle A\ C D we have fA, Kg(t) dt = 0. 
Thus, Morera's theorem implies that Kg(t) E H(D). Similarly for (4.17): From 
(4.12), (4.13) and (4.15) we obtain 

(4.19) IKNg(t)I < h E 
|k(tZn)g(zn) 

< 
ChN|gI|x 

e-ainhl 
___=?ChgN n=-N 

Since for a, h > 0 we have eah - 1 > ah, (4.17) follows after evaluating and 
estimating the sum on the right-hand side of (4.19). O 

COROLLARY 4.6. K is a bounded operator from X to X with IIKII < 2C/a!. 

COROLLARY 4.7. KN is a compact operator from X to X with ||KNI| < 
C(h + 2/ae). 

LEMMA 4.8. Let the following conditions be satisfied: 
(a) k(t, ) E H(D) for all t E L; 
(b) the inequality (4.15) is satisfied for all t E L and for all r E D; 
(c) h in (4.12) and (4.13) is selected by h = [27rd/(ceN)]'/2. 

Then for any g E H(D) and g bounded in D, 

(4.20) I(K - KN)gIX ? 
ee(d ) [ -(27rdaN)1/2 + 1] A sup g(z19)I 

Proof. Let M = SUPzED g(z)I. For fixed t E L let us consider the function 
F(z) = k(t, z)g(z), where z E D. Then it follows from assumption (b) that 

(4.21) IF(z)I| < MCI0'(z)Ile-a0(z)1I, z E D. 

We also observe that F E B(D), since (4.3) and (4.4) follow from (4.21). For 
example, we have 

(4.22) N(F, D) < MCN(e- $f(z) I I A'(z) lD) = 2MCJ e-l+idl dx. 
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Thus, since 

(4.23) (K-KN)g(t) IL F(T) EN ?'(Zn) 
n=-N 

Lemma 4.8 follows from Theorem 4.3, (4.21), (4.22) and (4.23). E 

THEOREM 4.9. Let all assumptions of Lemmas 4.5 and 4.8 be satisfied and let 
(I - K)-1 exist on X. Then there is an integer No > 0 such that for all integers 
N > No, (I - KN)-1 exists on X and 

(4.24) l(I -KN)- l < 1II (I-K)-1 + 
II 

- )1H IIKN IH 
(4.24) ~ (I-KN)1H 1 - 11(I - K)-1H 111(K - KN)KNH 

Let f E H(D) and let f be bounded in D. Let g E X and gN E X be solutions 
of Eqs. (4.11) and (4.14), respectively. Then g E H(D) and g is bounded in D. 
Furthermore, there exists a constant C > 0 independent of N and g such that for 
N > No, 

(4.25) 119 - 9NX < Ce-(27daN)1/2 sup Ig(z)I 
zED 

Proof. To prove the first part of Theorem 4.9, let us take g E X. Then it follows 
from Lemma 4.5 that KNg E H(D) and that the inequality (4.17) holds true. Now 
applying Lemma 4.8 to KN9, we have from (4.20) and (4.17) that 

I (K-KN)KNgIIX 

(4.26) < e (2dN)1/ [1- e-(2rdN)/2 + 1] (h + 2 HIgIlx- 

But the inequality (4.26) implies that I(K - KN)KNII - 0 as N -* oo and hence 

the first part of Theorem 4.9 follows from Theorem 1.10 in [1, ?1.7] and Corollaries 
4.6 and 4.7. To prove the second part of Theorem 4.9, we first observe that the 
identity g = Kg + f and Lemma 4.5 imply that g E H(D) and that g is bounded 
in D. To verify (4.25), we note from (4.11) and (4.14) that 

(4.27) 9 - gN = (I - KN)-1(K - KN)g, 

and hence 

(4.28) 119g-N lax < || (I-KN)-1 || 1l (K-KN)9g1X 

Now using (4.24), we see that the first factor on the right-hand side of (4.28) can 
be estimated by a constant as N -* oc, since II(K - KN)KNII - 0 and since, by 

Corollary 4.7, 11KN II can be bounded independently of N. Thus, (4.25) follows from 
(4.28) and (4.20). 5 

In order to find the solution gN of Eq. (4.14), assuming of course that N > No, 
we first solve the linear system 

(4.29) (I - K)d = f 

for the vector d = (dN, ...,dN)t, where in (4.29) I denotes the unit matrix of 
order 2N + 1, and where the square matrix K = (kkmn)n N -N of the same order 
and the vector f = (f-N,.. ,fN)t are defined by 

(4.30) kmn = hk(Zm,,Zn) 
q$'(zn) 
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(4.31) fm = f(zm). 

It follows from Theorem 4.9 that the linear system (4.29) has a unique solution. For, 
if gN is a solution of Eq. (4.14), then d = (9N(Z-N),... , 9N(ZN))' satisfies (4.29) 
and conversely, to each solution d of (4.29) there corresponds a unique solution 

gN E X of Eq. (4.14) which agrees with the components of d at the points Zn, 
n = -N(1)N (see [2, ?3.0]). Thus, having found a solution d of (4.29), we have 

(4.32) 9N(Zn) = dn, n = -N(1)N, 

and hence from (4.14) and (4.12), 

(4.33) 9N(t) = f(t) + h E 0b/zn) dn, t E L. 

4.3. The Numerical Solution of Eq. (1.12)-(1.15). We now consider applicability 
of Nystrbm's method of Subsection 4.2 to obtain an approximate solution of Eq. 
(1.12)-(1.15). Let us assume that the arc L = L(ci,c2) and the domain D are 
defined as in Definition 4.1, and let Assumptions 3.6, 3.7 and 3.10 be satisfied. In 
addition, assume that for the map X of Definition 4.1 and for any al > 0 there is a 
positive constant C such that 

(4-34) IZ - C11 z- C21)'-l < Cj0'(z)je`10(z)1, z E D. 

If (I-K)-1 exists on X, then it follows from Theorems 3.9, 3.11, 4.9 and inequality 
(4.34) that Nystrbm's method of Subsection 4.2 with ar = C, where af is given by 
(3.7), can be applied to obtain an approximate solution of Eq. (1.12)-(1.15). The 
inequality (4.25) then gives a bound on the error between the exact solution g and 
its approximation gN defined in (4.33), where d = (d-N,... , dN)' is a solution of 
the linear system (4.29). It is clear from the definitions of the kernel k, and the 
right-hand side f (see (1.14) and (1.15)) that in order to evaluate the coefficients 
kmn (see (4.30)) of the matrix K and components fm (see (4.31)) of the vector f 
of the linear system (4.29), it will be necessary to have a good numerical technique 
for approximating singular integrals of the form (1.2). We therefore consider this 
problem before describing completely an algorithm for obtaining an approximate 
solution of Eq. (1.12)-(1.15). 

5. Quadrature Formulas for Evaluating Cauchy Principal Value Inte- 
grals. In this section we derive formulas for the approximate evaluation of singular 
integrals SF(t), t E L, defined by (1.2) in the case when the function F is analytic 
in some domain containing L. First we present a general, infinite sum formula, 
which will later be used to obtain a finite sum formula for a certain class of func- 
tions F. The formulas presented here were first introduced for specific arcs L in 
[6]. 

In this section we shall use the notations and definitions of Subsection 4.1. In 
what follows we assume that the arc L = L(c1, c2), the domain D, the map X and 
the constant d are the same as those of Definition 4.1. Also, by H(D) and B(D) 
we denote the classes of functions introduced in Subsection 4.1. 

5.1. General Quadrature Formula. For h > 0 and n E Z we define the functions 

(5.1) tn (Z) = 
h cos[7r{q$(z) - nh}/h]-1 z E D (5.1) t~~~(z) = 
0jq'(zn)(z -Zn) 

, zD 
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where 

(5.2) Zn = (nh) 

For later purposes we note that 

{hAif 1) : 1 m 
(5.3) tn(Zm) = 0'(Zn)(Zm -Z) 

0, if n = m. 

LEMMA 5. 1. Let the functions tn(z) be defined by Eq. (5.1). Then there is a 
constant C > 0 such that for all n E Z 

(5.4) sup Itn(t) ? C. 
tEL 

Proof. See Appendix B. E 

THEOREM 5.2. Assume that a function F E B(D) is such that fL IF(z) dzj < 
oo, and let either one of the following inequalities (5.5) or (5.6) be satisfied: 

(5.5) F(Zn) < 00; 

(5.6) t E S F(Znt ) < ?? 
nEZ 

Given t E L, let SF(t) be defined by (1.2), and let 6(t) be defined by 

(5.7) 6(t) = SF(t) -E1 F(Zn)tn (t)i 
nEZ 

where tn(t) are given by (5.1). Then 

e -d/(2h) 
(5.8) 1e(t)I < N(F, DI t) 2w sinh[wd/(2h)] 

where 

(5.9) N(F,D, t) = limrinf F(z) dz I 
y-+d- $ (Lvz - t 

and where Ly in (5.9) is defined by (4.6). 

Proof. See Appendix B. E 
We remark that under our assumptions on F in Theorem 5.2, the quantity 

N(F, D, t) as well as SF(t) may become unbounded as t approaches either of the 
endpoints of L. Hence, in this case the estimate (5.8) should be interpreted in the 
sense of a relative error. 

5.2. Uniform Estimate for N(F, D, t). If the domain D satisfies some additional 
geometric properties and F(z) goes to zero fast enough as z approaches the end- 
points of the arc L, then it is possible to obtain a bound for N(F, D, t) which is 
independent of t. 

Assumption 5.3. Let c denote either of the endpoints c1, c2 of L and let LY be 
given by (4.6). For a constant Y, 0 < Y < d, let positive constants 1, 1 = 1, 2, 3, 
exist such that 
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for all z E 0-1(Ly), where Y < Iyj < d, and for all t E L n D(c, 2), where 
D(c, 2) = {zE C: z-cl < ~2}, and such that 

(5.11) IZ - tj > 3 

for all z G d/1(Ly), where Y < Iyj < d, and for all t G L\Uj2=iD(cj, 2). In 
addition, let us also assume that for any al > 0, there exists a constant C > 0 such 
that 

(5.12) f Iz- cl -1dzl < C 

for all y satisfying Y < Iyj < d. 

LEMMA 5.4. Let Assumption 5.3 be satisfied and let F(z) be a complex-valued 
function defined on D for which there exist positive constants C and al such that 

(5.13) IF(z)l ? C(|z - c1l Z - c21)', z E D. 

Let N(F, D, t) be defined by (5.9). Then 

(5.14) sup N(F, D, t) < oo. 
tEL 

Proof. It is easy to see that the uniform boundedness of N(F, D, t) for t G 
L\U2=1 D(c3,,2) follows from (5.11), (5.13) and (5.12). Therefore, assume that 
t E L nD(cl, f2) (the case when t E L nD(c2, 2) is analogous) and let y be such 
that Y < IyI < d. Then using (5.13), we obtain 

(5.15) f | ( dz < Csup -C21c Iz-F Idz 
J-I(Lo) 

dz ZED c2 (LKf ) IZC1d 

where supZED Iz - c2 I' is finite because D is bounded. Now, since 

Iz-t IdI Ijz-tIdz 
(5.16) ;-(Ly) Iz l-(Ly)Z c 

< It - cll l- ci IC-' 
|dI Iz -cl 1`1 dzI, 

. - 1(LU) z - ti $ (Ly) 

the inequality (5.14) follows from (5.15), (5.16), (5.10) and (5.12). 5 
5.3. Finite Sum Quadrature Formula. The next step in deriving effective formu- 

las for approximating the singular integrals SF(t) is to replace the infinite sum in 
(5.7) with a finite one. 

Assumption 5.5. Let the domain D and the map q be defined as in Definition 
4.1. In addition, assume that there exists a constant C > 0 such that 

(5.17) IZ- c1l Z - c21 < Ce-I(z)I, z E D, 

and such that 

(5.18) Idz < C, as x - 1oo, 

where Lx in (5.18), for x E R, is given by (4.5). 
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THEOREM 5.6. Let Assumptions 5.3 and 5.5 be satisfied. Let F E H(D), and 
let us also assume that there exist positive constants C and al such that 

(5.19) IF(z)I ? C(z - ci I z - C21)', z e D. 

Let SF(t) be defined for t E L by (1.2), and let h be selected for a positive integer 
N by h = [27r/(cxN)]1/2. Then there exists a constant Ci > 0, which is independent 
of N, such that for all t E L, 

N 

(5.20) SF(t) - E F(zn)tn(t) < CNl/2e-(7rdaN)1/2 

n=-N 

where tn(t) and Zn in (5.20) are defined by (5.1) and (5.2), respectively. 

Proof. It follows from the assumptions that all hypotheses of Theorem 5.2 are 
satisfied. In particular, we see from (5.19) and (5.17) that there is a constant C2 
such that 

(5.21) Z IF(zn)I < C2 > e aInih < x, 
nEZ nEZ 

and hence the inequality (5.6) holds. Next, by Lemmas 5.4, 5.1 and (5.8), (5.19), 
(5.17) we have for t E L that 

N 00 

(5.22) SF(t) - E F(Zn)tn(t) < C3e71rd/h + C4 E e- anh 

n=-N n=N+1 

where C3, C4 are positive constants independent of N and t. The estimate (5.20) 
now follows from (5.22) upon choosing h. El 

COROLLARY 5.7. Let all assumptions of Theorem 5.6 except the inequality 
(5.19) be satisfied. Let numbers F,, j = 1, 2, and constants 0 < Oa < 1 and C > 0 
be such that 

(5.23) JF(z) -Fj I < Clz - cj1l, z E D, 

for j = 1, 2. Then there exists a constant C, > 0 which is independent of N and 
such that for all t E L, 

N 

(5.24) SF(t) - S(LF)(t)- E [F(Zn) - LF(zn)]tn(t) < C? N112e-(7rdaN) 
n=-N 

where 

(5.25) LF(z)= F1 +- F2 z E D. 

Proof. From (5.25) and (5.23) we have for z G D, 

((F - LF)(z)l < c2 [ -] zc [F(z) - F2] 
(5.26) c2 c1 c2 C1 

< - 1c2 - zI'Iz - 
Cll'(IC2 

- Z1-a + lz -Cl-). 
Ic2 - C1 I 

Since D is a bounded region, the functions Ic2 -z I-a and Iz - c1I-a are uniformly 
bounded on D. Hence, there exists a constant C2 > 0 such that 
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Thus, (5.24) follows upon applying Theorem 5.6 to (F - LF)(z). El 
We note that S(LF)(t) can be evaluated explicitly for t E L, and hence (5.24) 

provides a very accurate formula for the approximate evaluation of SF(t) for func- 
tions F satisfying the assumptions of Corollary 5.7. 

6. Algorithms and Error Estimates for the Numerical Solution of Eq. 
(1.1). Finally, we are in a position to present an algorithm to approximate the 
solution of Eq. (1.12)-(1.15), and hence also of Eq. (1.1). We shall assume that 
the arc L = L(ci, C2) and the domain D are given as in Definition 4.1, and that 
the inequality (4.34) and Assumptions 5.3 and 5.5 are satisfied. The coefficients 
a, b, ki, f, of Eq. (1.1) will be assumed to satisfy Assumptions 3.6, 3.7 and 3.10, 
so that all results from Subsection 3.2 concerning the fundamental function Z of 
Eq. (1.1) corresponding to the class ho, the kernel k (see (1.14)) and the right- 
hand side f (see (1.15)) of Eq. (1.12)-(1.15) will hold true. Let us also assume 
that for K defined by (1.13) the operator (I - K) has an inverse on the space 
X (see Definition 4.4). In presenting the algorithm, we consider two cases. First 
we describe and analyze in detail the algorithm when both endpoints of the arc 
L = L(ci, c2) are nonspecial (see Subsection 2.2). Next, we treat the case when 
one or both of the endpoints are special. In what follows, we assume that the 
fundamental function Z is known explicitly. Later, in Subsection 6.4, we explain 
how one can compute Z approximately in the case when an explicit formula for Z 
is not available. 

6.1. Nonspecial Ends. In this subsection we assume that both ends c1, c2 of 
the arc L = L(ci, c2) are nonspecial. The following additional result about the 
fundamental function Z will be needed. 

LEMMA 6. 1. Let the assumptions of Lemma 3.5 be satisfied and let c;, j = 1 
or 2, be a nonspecial end of L, i.e., -1 < a, + Aj < 0. Then there exists a constant 

C3 > 0 such that 

(6.1) IZ1(z)l < C31z - cjl-%-, z ED. 

Proof. Following the proof of Lemma 3.5, we see that (6.1) follows from (3.8), 

(3.9) and (1.5). a 
To simplify the derivation of the algorithm, let us set 

(6.2) a = min(a, -a, - Al, -l2 - A2) > 0, 

where a, ap Aj, j = 1,2, are given by (3.7), (2.4) and (2.5). Then (3.6) and (6.1) 
imply that there exists a constant C > 0 such that the fundamental function Z 
satisfies 

(6.3) IZ(Z)l < Q~z-C11 IZ-C21)0-l IZ-lzl<Cl-i zclt z E D. 

To obtain an approximate solution of Eq. (1.12)-(1.15), we use Nystrbm's method 
described in Subsection 4.2, with 

(6.4) h= (2- 7j), Zn =q51(nh). 
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We approximate the singular integrals in the expressions for kmn (see (4.30), (1.14)) 
and fm (see (4.31), (1.15)) by means of the summation formula in (5.20) with 

,7d 1/2 * 

(6.5) h* = (c7rN) Zn = q-l(nh*) 

and 2N in place of h, Zn and N, respectively. It is obvious from (6.4) and (6.5) 
that h* = h/2 and Zn = Z2*n. Therefore, on using (5.3), we obtain 

km- h Z( b b(z,) hF E i (z, rZn)/Z(Z* ) 1-(ll2 

'(Zn) r j l=-2N q5 (zl z) Z Zm 

Ll2m 
(6.6) 

--(zm) k (zm, Zn)X 
z~~~~~~~~ 

afl _ b(zm) h 2N f1(Zl)/Z(Zf I - (_)l-2m 

(6.7) m _ 
= m 

1=-2N 
q5'(zl - Zm 

1$ 2m 

+ b(Zm)Ptc-i(Zm) 

in place of kmn and fm. It follows from Theorem 5.6 and the inequality (6.3) that 

(In-C Zn - C2 1lO(N1 /2e-(27rdoN) 1/2) 
(6.8) Ikmn - kmnl < h( In _ (Zn-) I(N1 

(6.9) Ifm - fmI < O(N 1/2e-(27rdoN))/2. 

Of course, the linear system (4.29) is now replaced by 

(6.10) (I - K)d = 

where d = (dN,...,dN)t and where K = (kmn)mfl N and f = (f-N, ,fN)t 

are given by (6.6) and (6.7). 
We shall use maximum vector and matrix norms, i.e., 

N 

(6.11) IdI=o max=dn , KI max N -kmnjm 
_ - - ~~~n=-N 

to estimate the error between d and d. By well-known results of linear algebra on 
solving perturbed linear systems (see for example [15]) we find that 

(6.12) Id - dloo < 
I - (I - - kl (If - f loo + IK - Klooldloo). 

But for Nystr6m's method we have I(I - K)-1oo < I(I - KN)1H (see [2, ?3.1]), 
where KN is defined by (4.12). Hence it follows from (4.24), Corollary 4.7 and the 
fact that 11(K - KN)KNI -- 0 as N -- x, that there exists a constant C > 0, 
which is independent of N, such that 

(6.13) I -K)-1 1 < C. 
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Now using (6.8), (6.9) and (4.34), we obtain from (6.12) 

(6.14) Id- aoo = O(N1/2e-(27rdaN) 1/2)V 

Therefore, from (4.25), (4.32), (6.14) and the triangle inequality we have 

(6.15) lg(zn) - dn = O(N1/2e-(27rdaN) 1/2) n = -N(1)N, 

which gives the discrete error estimate between the exact values of the solution 
g of Eq. (1.12)-(1.15) at the points Zn and the corresponding components of the 
solution d of the linear system (6.10). 

To find an approximation to g(t) for arbitrary t E L, we can make use of Eq. 
(4.33). First, let us replace dn by dn, where d = (d-N, ... , dN)t is a solution of the 
linear system (6.10). Next, we approximate the singular integrals in k(t, zn) and 
f(t) (see (1.14) and (1.15)) by means of the summation formula in (5.20), where 
h*, 7Z* defined by (6.5) and 2N replace h, Zn and N, respectively. Denoting by k 
and f the approximations to k and f obtained in this way, we see that gN in (4.33) 
is replaced by gN, where 

(6.16) b y (t) = f(t) + h , '(Zn) 
t E L. 

Carrying out a similar error analysis as above, we can then show that 

(6.17) 19(t) - gN(t)| = O(N1/2e-(27rdaN)1/2), t E L. 

Thus, it is seen from (6.15) and (6.17) that both discrete and continuous errors are 
of exponential decay with respect to N. 

It follows from (6.16), that in order to evaluate gN(t) for each new value of 
t E L, complicated expressions for f (t) and k(t, Zn) have to be computed. One way 
to overcome this inconvenience is to construct an interpolant to g, which would also 
give an exponential error estimate for all t E L, and whose cost of evaluation for 
arbitrary t E L would be relatively low. To develop this idea further, we shall need 
the following result which establishes some properties of the function g. 

LEMMA 6.2. Let Assumptions 3.4 and 3.10 be satisfied and let k1 (t, T) satisfy a 
Lipschitz condition with respect to both variables on L x L. Let us also assume that 

kl(, T) E H(D) for all TE L and that ki(t, T) is bounded on D x L. Let 0 < , < 1 

be such that a, b, fi E Lip, (L) and let there exist positive constants C, and C2 such 
that 

(6.18) Iki(t, IT) - ki(t2, T)| I< C1Itl -t2 I" t1i t2j T E Li 

and 

(6.19) Ib(z) - b(c,)I < C21z - cj I, z E D, 

for j = 1, 2. Let both ends C1, C2 of the arc L = L(cl, c2) be nonspecial and let a(j 
and Aj, j = 1, 2, be given by (2.4) and (2.5). Then for any solution w E H* of Eq. 
(1.1) the function g defined by (1.11) is bounded and analytic in D. Furthermore, 
g is continuous at the ends c1 and C2 and there exists a constant C3 > 0 such that 

(6.20) Ig(Z) - g(cj)I < C31z - cjjr, Z E Di 
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for j = 1, 2, where 

(6.21) = min(,u, -alv - A1, -2 - A2) > 0. 

Proof. First we show that for the fundamental function Z we have Z-1 E 

LipY(L). It is easy to see from our assumptions that the product of the first two 
factors on the right-hand sides of Eq. (2.11) is a function in the class Lip,(L), since 
logG E Lip,(L). Also it follows from Eqs. (2.7), (2.12) and the theorem stated 
in [12, ?19, p. 46] that Zi defined by Zl(t) = F1(t)er(t) satisfies Z71 E Lip,(L'), 
where L' is any closed subset of L. Therefore, it only remains to consider Z71 (t) 
on L near the points c1 and C2- Without loss of generality we shall analyze Z71 (t) 
only for t E L and t in a neighborhood of cl. By adding and subtracting log G(cl) 
in the numerator of (2.12), it follows from (2.7), (2.4), the identity 

I < = log(c2 - t) - log(t - cl) 

(see (12.9a) in [12, ?12]) and the theorem in [12, ?19, p. 46] that 

(6.22) Z1(t) = (t - c1)'1+ 1+Z01 (t - c2)A2(C2 -t)_"1 1eh(t) 

where h(t) is a function which satisfies a Lipschitz condition on L near c1 with 
exponent yu. Thus, using results of [12, ?7], we conclude from Eq. (6.22) that Z1 
satisfies a Lipschitz condition on L near cl with exponent -y. This concludes the 
proof that Z-1 E LipY(L). 

In order to verify the properties of g stated in Lemma 6.2, we first note from Eq. 

(3.3) that 

(6.23) 9=91-92+93, 

where 

(6.24) a=o, bS fo b, . = 

and where 

(6.25) fo(t) = fi (t) - j ki (t, r)w r) dr. 

It is easy to see from Eq. (6.25) and our assumptions on fi and k1 that fo is bounded 
and analytic in D and that fo E Lip,(L). Hence it follows from Eq. (6.24), Lemma 
3.5 and (6.1) that the function gl satisfies all assertions of Lemma 6.2. Obviously, 
the same is true for the function g3. Let us therefore consider h1 = S(fo/Z), which 
can be extended analytically into D via the formulas 

(6.26) hi (t) = { -h2(t)?+H(t), t EDs, 

h2 (t) + H(t), t E D- 

where h2 = fo/Z and where H(t) = (7ri)-1 L h2(r)/(r - t) dr. We conclude from 
(6.1) and from what has been proven about fo and Z-1 that h2 E Lipy(L) and 
also, that h2(cl) = h2(c2) = 0. By the theorem in [12, ?22, p. 53], the function H 
satisfies all assertions of Lemma 6.2 in the regions D+ and D . Since the same is 
true for h2, and since 92 = bhl, it thus follows that g has all the properties we set 
out to establish. El 
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We are now ready to construct an interpolant to g. Let us assume that all 
assumptions of Lemma 6.2 are satisfied, in addition to all assumptions listed at 
the beginning of this section. Let us set h = [7rd/(-yM)]/2, where -y is given by 
(6.21) and M is a positive integer, and let us define points 0r 1 = q-(nh), where 
n = -M(1)M. Let 

si[x-nth)/h] (6.27) S(n, h) (x) = , xe(x - nh)/hRI 7r(x - h/ 

and let Lg(z) be the linear part of g, which is equal to g at the endpoints c1, c2 of 
the arc L = L(cl, c2), i.e., 

(6.28) Lg(z) = C2Z g(C) + Z C(C2), z E D. 
C2 C1 C2 -C1 

Then it follows from Lemma 6.2 and Theorem 4.3 of [13], applied to g - Lg, that 

M 

(6.29) g(t) - Lg(t) - [g - Lg] (Pn)S(rt, h) o ?(t) < CM1/2e-(7rd-yM)1/2 

n=-M 

for all t E L, where C depends only on g, d and -y. Based on the inequality (6.29), the 
interpolant to g can now be constructed as follows. First, from (6.16) we compute 
the approximations 9n = 9N(Zn) to g at Zn for n = -M(1)M, for which we have 

(6.30) 1g(Cn) - 9J < 0(N1/2e-(2rdaN)1/2) n = -M(1)M, 

by (6.17). Next we set 

C2 -t - t-c1 
(6.31) Lg(t) = C-C + gmI t E L, 

which is a linear function in t equal to 9-M and 9M at c1 and C2, respectively. The 
interpolant to g is then defined by 

M 

(6.32) g(t) = Lg(t) + E [9n - LgQn)]S(n, h) o 0(t), t E L. 
n=-M 

Using (6.29), the triangle inequality and (6.30), it is easy to estimate the difference 
(g - g)(t) for t E L by first estimating the expression Lg(t) - Lg(t). 

Let us recall at this point that evaluations of 9n = jNQZn), n = -M(1)M, can 
be carried out by means of Eq. (6.16). Then the construction of the interpolant g 
in (6.32) is simplified significantly if -y and M in the expression for the step h are 
equal, respectively, to ac and 2N, which were used in the formula (6.4). Since we 
can always choose Ol of Eq. (6.2) and -y of Eq. (6.21) by the expression 

(6.33) o =a = min(a, -a1 - A1, -c -A2, u) > 0 

we shall assume that ay = al and M = 2N. Then, of course, h = h/2, and it is easy to 
see that k(z2rn, zn) and f (Z2rn), m = -N(1)N, in (6.16) will be equal, respectively, 
to kmn and fm, from (6.6) and (6.7), since h = h* and Zn = Z*, n = -2N(1)2N. 
This and (6.10) show in turn that 92m = din m = -N(1)N, where values of 
dm have already been computed by solving the linear system (6.10). Also, the 
evaluation of 9m for m odd and -2N < m < 2N is easy, since the corresponding 
values of kzm, zn) and f (Zm) in Eq. (6.16) will be computed by formulas similar to 
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those in (6.6) and (6.7). More precisely, let us replace Zm and 2m in (6.6) and (6.7) 
by im = Z* and m, respectively. Then the right-hand sides of (6.6) and (6.7) will 
yield k(zm, zn) and f (im), respectively. As we can see from (6.29) with M replaced 
by 2N, another advantage of taking ca equal to -y and proceeding as above is that 
the difference between g and its interpolant g (see (6.32)) will be of the same order 
as the error between g and its approximation AN (see (6.16), (6.17)), which will be 
obtained via Nystr6m's method. 

Since we are assuming for the time being that the fundamental function Z is 
known explicitly, the approximation to the solution w of Eq. (1.1) can be obtained 
from (1.11), once the approximation to g is known. Let il be the approximation 
to w obtained by replacing g in (1.11) by either AN of (6.16) or 9 of (6.32). Since, 
in general, Z(t) will be unbounded at the ends of L = L(cl, c2), the absolute error 
(w -i)(t) I may be large in the neighborhoods of cl and c2. However, if g(cj) 0 0, 

j = 1, 2, then w(t) will become infinite for t approaching c1 or c2, at the same rate 
as Z(t) does. Thus, in this case the relative error 1(w - )(t)/w(t)j will be of the 
same order as the absolute error in the approximation of g by AN or by 9. 

6.2. Special Ends. In this subsection we assume that one or both of the endpoints 
of the arc L = L(cl, c2) are special. Let us first establish some additional properties 
of the fundamental function Z. 

LEMMA 6.3. Let the assumptions of Lemma 3.5 be satisfied and let c;, j = 1 or 
2, be a special end with b(cj) = 0, i.e., aj + Aj = 0. Let us assume that 0 < lyj ? 1 
is such that a, b E Lipj (L), the inequality (3.10) of Assumption 3.6 is satisfied, 
and that there exists a constant Ci > 0 such that 

(6.34) la(z) - a(cj)I < C1lz - cjlKi, z E D. 

Then Z` is continuous at c;, and there exists a constant C2 > 0 such that 

(6.35) iZ_'(Z) - Z-1(Cj)l < C21Z - cjli, z E D. 

Proof. Without loss of generality we assume that j = 1, i.e., that c1 is a special 
end and that b(cl) = 0. Then it follows from Eq. (2.4) that logG(cl) =-a127ri, 
where a, is an integer. By adding and subtracting logG(cl) in the numerator of 
(2.8) (compare [12, ?16, Eq. (16.5)]) we obtain 

(6.36) F(z) = Fo(z) - al log Z - C2 zL, 

where 

(6.37) ?O(Z) =hri h(T) dT h(T) = log G(r) - log G(cl). 

Here, log[(z - c2)/(z - c1)] is understood to be a definite branch of the logarithm 
which is one-valued in the complex plane cut along L. The assumption a, b E 

Lip, ~(L) implies that both log G and h are in the class Lip,, (L). Since obviously 
h(cl) = 0, it follows by the theorem in [12, ?16, p. 38] that 17o(z) is continuous 
at c1 and that Io(z) tends to lFo(cl) as z -+ c1. It can also be shown, by making 
use of the theorem in [12, ?22, p. 53], that there is a constant C > 0 such that for 
z V L and z near c1 

(6.38) l1o(z) - l'o(c1)j < Cjz - cilj". 
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Now using (6.36) as well as (2.9), (2.7) and the relation ca + A1 = 0, we obtain 

(6.39) X(z) = (z-c2) 2-'e'o(z), z ? L. 

Finally, since b(cl) = 0, we find from (2.10) and (6.39) that 

(6.40) Z(cl) = a(ci)X(cj). 

Thus, (6.35) now follows from (3.8), (6.40), (6.39), (6.38) (6.34) and (3.10). 0 
Without loss of generality let us now suppose that cl is a special end, and that 

c2 is a nonspecial end. We also assume that b(cl) = 0, since the case b(cl) :# 0 is 
seldom encountered in applications, and even if it occurs, it can be handled by a 
similar, although somewhat more complicated, analysis. 

In order to describe the algorithm, let us assume, in addition to all assumptions 
mentioned at the beginning of this section, that the assumptions of Lemma 6.3 
corresponding to j = 1 are also satisfied. Further, let us assume that the coefficients 
k1 and fl of Eq. (1.1) satisfy inequalities similar to (6.34), with j = 1. More 
precisely, let there exist a constant C > 0 such that 

(6.41) ikl(z,)-ki(cl,)I < Clz-ccll", z E Di r E Li 

|fl (Z) -fl (Ci) I < C|Z - C 1|81, z E D. 

Finally, set 

(6.42) a =min(a, ,u1, -c22- A2), 

where a, (2, A2 are given by Eqs. (3.7), (2.4), (2.5). As in Subsection 6.1, we 
first apply Nystrbm's method with h = [2ird/(caN)]1/2 and zn = 0-1 (nh) to obtain 
an approximate solution of the integral equation (1.12)-(1.15). We approximate 
the singular integrals in kmn (see (4.30), (1.14)) and f]m (see (4.31), (1.15)) via the 
summation formula in (5.24), in which we take h* = [7rd/(ca2N)]1/2, Zn - 0-l(nh*) 
and 2N in place of h, Zn and N, respectively. We then get a linear system of the 
form (I-K)d = f. It is obvious from (5.24) that all error estimates from Subsection 
6.1 still hold true. In particular, (6.17) will be satisfied if f and k in (6.16) are in this 
case approximations to f and k, respectively, obtained by means of the summation 
formula in (5.24). Furthermore, we can show that an interpolant similar to the 
one in Eq. (6.32) can be constructed for g. Once again, an approximation to the 
solution w of Eq. (1.1) will then be obtained via the relation (1.11). 

Let us remark at this point that all cases considered so far, i.e., the ends of 
L = L(c,,c2) being nonspecial as in Subsection 6.1 or else special, but with the 
coefficient b vanishing at c;, cover completely all possible situations which may 
occur when the coefficients a and b of Eq. (1.1) are respectively real and purely 
imaginary on L. 

6.3. Determination of the Polynomial P,_1. We have tacitly assumed up to 
now that the polynomial P,_1 of degree not greater than i, - 1, appearing on the 
right-hand side of Eq. (1.15), was known explicitly. In general, however, instead 
of P,_1 we may only know values of the solution w to Eq. (1.1) at some discrete 
points t1, j = 0(l)r, where t. :A tj for j :A 1. Hence, by the relation (1.11) we will 
also know values g(t.), j = 0(1I)>, of the solution g to Eq. (1.12)-(1.15). Without 
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loss of generality let us consider the case of nonspecial ends from Subsection 6.1, 
and let us assume that 

pc-i 

(6.43) Pi (Z) = Z3 
.1=? 

where the -yj are unknown coefficients. Let the vectors d(i) = (d <,...,d(3) )t for 
j = -1(1)r, - 1 be solutions of the linear system 

(6.44) (I - K)d(a) = f(J) 

in which the matrices I and K are the same as in the linear system (6.10), and 
where the components f ,m = -N(1)N, of the vectorsf) ) =t 

are given by 

(6.45) fi) = b (zm)zg 

for j = 0(1)ic - 1, whereas the components f(-l) of the vector f(-l) are equal to 
the sum of the first two terms on the right-hand side in (6.7). It follows from (6.44) 
that the solution d of the linear system (6.10) can now be written in the form 

ic-i 

(6.46) d - d(^) + E a1d(i) 
.1=? 

Thus having first solved (6.44) for d(g), j = -1(1)i - 1, we can determine the 
coefficients t-Y. in (6.43) or (6.46) by equating either gN(t) or g(t), given respectively 
by (6.16) and (6.32), to g(t) at the points t = tj, j = 0(1)>c. In the case when all 
discrete points t., j = 0(1)>., coincide with some of the points zn, n = -N(1)N, it 
follows from the identity 9N(Zm) = dm that the coefficients -yj can be found easily 
from (6.46) by equating appropriate components of the vector on the right-hand 
side of (6.46) with those of the corresponding values of the function g. Once the 
vector d is determined, then an approximation to g(t), for t E L, is obtained using 
either (6.16) or (6.32). 

6.4. Numerical Evaluation of the Fundamental Function Z. If the fundamen- 
tal function Z is not known explicitly, then in order to carry out the algorithms 
described in Subsections 6.1 and 6.2, we will first have to evaluate Z at some 
discrete points. For example, for the case of nonspecial ends, the values Z(z*), 
n = -2N(1)2N, will be required, as we can see from Eqs. (6.6) and (6.7). It is 
obvious from Eq. (2.11) that the problem of computing Z(t) for t e L leads to 
the evaluation of the function F(t) given by (2.12). Let us assume that in addition 
to Assumption 3.4 we also have a,b E Lip,(D), i.e., a and b satisfy (2.1) for all 
t1,t2 E D. Then logG E Lip,(D) n H(D), where G is defined by (2.3). Hence, 
the function F defined in (2.12) can be computed at the required points using the 
summation formula in (5.24). 

7. Numerical Examples. In this section we consider two numerical examples 
which illustrate some of the points discussed in the preceding sections. 

Example 7.1 [3]. Consider the singular integral equation 

-(1- t2)1/2W(t) + ( J 7 +- ( _1 + (t2 + 6t + 8)-1/2 
7r T-t 7r T~~7 + t + 3 
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for -1 < t < 1. This equation has the particular solution w(t) = (1 -t2)-1/2. 
Both points -1 and 1 are nonspecial ends, the index i, is 2, and the fundamental 
function Z is Z(t) = 2(1 - t2)-1/2. Thus-it follows from Eqs. (1.5) and (1.11) that 
the exact solution g of the Fredholm integral equation (1.12)-(1.15) is g(t) = 1/2. 
Equation (1.12)-(1.15) has been solved approximately by the method of Subsection 
6.1 with al = 1/2 and d = 7r/2. 

We have performed two tests for various values of N. In the first of these we used 
the explicit formula for the fundamental function Z(t) to carry out computations, 
while in the second, the fundamental function Z(t) was computed approximately, 
as described in Subsection 6.4, according to the formula (2.20). In both cases we 
have obtained two significant figures of accuracy in the approximate solution to 
g(zn), n = -N(1)N, when N = 4, three when N = 8 and four when N = 16. 
These results confirm the theoretical error estimate given by (6.15). 

Example 7.2. Let us consider the singular integral equation 

(1 -t)1/2W(t) + 
(1 t)1 a ( r) d 

+ |(t + r) (,r) d7 

=1+ ( ) I2n ii;;: + 2 V'2-(t + 1/3) 
7r (1 -t ) 1 - ((1 - t)/2)1l/2 ( /) 

for -1 < t < 1. This equation has the solution w(t) = (1 - t)-1/2. The points 
-1 and 1 are respectively special and nonspecial ends, the index rc is 0 and the 
fundamental function Z is Z(t) = (1 - t)-1/2. The exact solution g of Eq. (1.12)- 
(1.15) is g(t) = 2. The approximate solution of Eq. (1.12)-(1.15) has been obtained 
by the method of Subsection 6.2, in which we chose al = 1/2 and d = 7r/2. As 
in the previous example, corresponding to each value of N we have set up the 
linear system arising from Nystrdm's method in two ways: firstly by making use of 
the explicit formula for the fundamental function and secondly by computing the 
fundamental function approximately. When computing approximations to 9(Zn) 
for n = -N(1)N we have in both cases obtained one significant figure of accuracy 
when N = 4, two when N = 8 and three when N = 16. 

Appendix A. The Behavior of Cauchy Integrals Near the Ends of the 
Line of Integration in the Case when the Density Function Depends on 
a Parameter. Let L = L(cl, c2) be a smooth, open arc of finite length with ends 
c1, c2 in the complex plane and with direction from c1 to c2, and let A be a set 
of points in the complex plane. Let us assume that w*(t, r) is a bounded function 
defined on L x A which satisfies, uniformly for T E A, a Lipschitz condition with 
respect to t E L, i.e., there exist constants C > 0 and 0 < ,u < 1 such that 

(A. 1) Iw*(tl,T) - w*(t2,)I ? Cit -t21 A- I 

for all t1, t2 E L and for all r E A. Let us define the function w for all (t, r) E L x A 
by 

(A.2) w(t, T) = (t () -i, 

where c is either c1 or c2, where f is a real number and where (t - c)y is any definite 
branch of this function which varies continuously on L. 
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Let us state some results on the behavior of 

(A.3) (z = f w(u, r) du 

where r E A. Let z be near c, but not on L. Then: 
10. If -y 0 (i.e., w(t,r) = w*(t,r)), then 

(A.4) D(z, r) = +w(c, r) log -+ o(z, r), 
z 

where the upper sign is taken for c = c1 and the lower one for c = c2. In (A.4), 
log(1/(z - c)) = - log(z - c) is any branch of the logarithm which is one-valued 
near c in the complex plane cut along L and the function %O(z,) is bounded for 
all z in the neighborhood of c and all r E A, i.e., there exist positive constants M, 
6 such that 

(A.5) IDo(z,r)I < M for Iz-cI < 6, z V L, r EA. 

20. If y0, then 

(A.6) s(Zn) = w?ri (w (- c)7 
+ (o (Zr), 

where the signs are chosen as in 10. In (A.6), (z - c)I is any branch of this function, 
one-valued near c in the complex plane cut along L, taking the value (t -c) on 
the left side of L, and the function (o(z,) has the same properties as in 10. 

In the case when the point z = t is on L and near c (of course, in this case the 
integral in (A.3) is to be understood as Cauchy principal value integral), we have 
the following results: 

3?. If 0y = 0, then 1 has the form 

1 
(A.7) (Dt, r) = +w(cr) log __ + (D (tr), t C 

where the signs are again chosen as in 10, where log(1/(t - c)) =-log(t - c) is any 
branch of the logarithm that is one-valued and continuous on L and where D1 (t, r) 
is a bounded function for all t E L in the neighborhood of c and all r E A, i.e., 
there exist positive constants M, 6 such that 

(A.8) IDi(t,)I < M for It-cl < 6, t E L, r E A. 

40. If y0, then 

(A.9) (Dtj) = ?ircot('-ir) (C r) + (J(ti-), 

where the signs are selected as in 10 and where (D (t, r) has the same properties as 
in 30. 

The above results were established in [12, ?29] for the special case of w*(t, r) = 

w*(t), i.e., when w* is independent of r. In our case the proofs may be carried out 
in a similar way, and we therefore omit them. 
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Appendix B. Proofs of Lemma 5.1 and Theorem 5.2. 
Proof of Lemma 5.1. It follows from the properties of smooth arcs that there 

exist positive constants Ci and C2 such that for all n E Z and Ini > Ci we have 
rt 

(B.1) j Id&I < C21t - znj for all t E In 
Zn 

and 

(B.2) It-znI > min It-znl for all t E L\ln, 
t=Zn-1 ,Zn+1 

where In is the part of L between Zn-1 and Zn+l, and where the integration in 
(B.1) is taken over the part of L from Zn to t. It is obvious from the definition of 
tn(z) that in order to prove Lemma 5.1, it will be sufficient to verify (5.4) for all 
n E Z such that Inl > C1. Thus, let Inl > C1, and let us consider two cases, that 
when t E In and the other when t E L\ln. In the case when t E In, we find from 
(5.1), on using (B.1), that 

Itn(t)I = h 1 - cos[7r{q0(t) - nh}/h] 
(B-3) 

7W 0'(Zn) (t -Zn) 

(B3) |tt St'(r) sin[7rw{(T) - nh}/h] dr qm|(z) = L ~~~~~~~~< C2 max < C2In, 
'n ck'(Zn) (th Zn) zEln c'(Zn)- 

where 

(B.4) In = max 

Similarly, when t E L\in, then from the obvious inequality I1 -cos[7r{q$(t) -nh}/h]I 
< 2 and (B.2) we have 

2 h 
Itn(t)I ? - max1 l1~'Z)t n 

(B.5) 
t~tl 7r t=Zn-l,Xzn+l 

| ((Zn)(t -Zn)| 

(B.5) 2 (q' 1)'(nh) < 2 

W ,=(n-1)h,(n+1)h [q-1 (() - ?-1 (nh)]/h 
- - 

where In is defined by (B.4). Thus we see from (B.3) and (B.5) that the quantity 
In given by (B.4) needs to be estimated in both cases. 

Let us introduce a domain Bo C Dd which encloses the interval [-h, h] on the 
x-axis; for simplicity, we have chosen Bo to be a rectangle (see Figure B.6). 

y 

Dd 
Bo n B 
B0n 

-h h (n-1)h nh (n+1)h x 

PTOR PASn 

F IGURE B .6. The domain Bo0. 
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Let Sn be the linear map such that sn((n - 1)h) = -h and such that 
sn((n + 1)h) = h. Let 8 -1 be the inverse map of Sn, and let Bn = s-1(BO). Let us 
define a map hn on Bo by hn(%) = q$1(s8-(1)). It is clear that hn is a conformal 
mapping of Bo onto some subset of D. For 4 E Bn we have 1(() = (n 
and hence 

(B.7) (h1)() = ()) 

Furthermore, since Sj') = const :A 0, Eq. (B.7) implies that 

(B.-8) =n max n 
(B .8) n r1~~~~?1 ,?72 E[- h,h] h' ( rt2) 

Now using a result from the theory of univalent functions (see Theorem 4 from [7, 
?4, Chapter 2]), we conclude that a uniform bound, independent of n, exists for the 
right-hand side of (B.8). Hence Lemma 5.1 is proven. El 

Proof of Theorem 5.2. Let the inequality (5.5) be satisfied and let t E L. Let n 
be a positive integer such that -nh < 0(t) < nh and let 0 < Y < d. We introduce 
the following contours (see Figure B.10), 

11nY = 1-1({z = x ? iY: -(n + 2/3)h < x < (n + 2/3)h}), 

(B.9) nYi = f1({z = -(n + 2/3)h + iy: -Y < y < Y}), 
1n,Y = n1,Y Ui2 

Ln = 0- 1({z = x:-(n + 1/3)h < x < (n + 1/3)h}). 

Y 

o | (t) nh (n+1)h x 

-Y 

-d 

C 2 

FIGURE B. 10. The contours8ny1 iyLn 

In order to derive the formula for E(t) defined by (5.7), we assume that t 7 Zk 

for all k = -n(l)n; the same formula for t = Zk will follow by letting t approach 
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Zk. For any r E Ln and r :A t, r 7 Zk for all k = -n()n, we have from the residue 
theorem that 

F(,T)[0()T) - q(t)] n F(zk) q(t) - kh h(-i)k sin[7rq($T)/h] 

(B.11) i('-it)r - 'T) k--n 0/(Zk) t - Zk 7ri q(r) - kh 

_ sin[7r(T)/h] F(z) [q(z) - q(t)] dz 
27r Jlny [q$(z) - (t()](z- t) sin[7rq$(z)/h] 

Given E > 0, let Ln denote the image under the map q- 1 of the set {z = x: 

-(n+i/3)h < x < (n+l/3)h} with deleted segments of length 2E centered at points 

kh, k = -n(l)n, and ;b(t). Multiplying both sides of (B.11) by q$'Qr)/w[q$Qr)-;q(t)] 

and integrating over LI with respect to r, we get 

1 F F(,) dr n F (Zk) h(- 1)k g~ ~ I - 
7ri J re -t - q'(Zk)lri(t-Zk) 

f ift sin[iiyL(r)/h] ;'(r) _ sin[irq$Qr)/h]q bb(r) '1d 
XJLe q$ Q)-q$(t) q($r)-kh J 

(B.12) n 
1 1 sin[7rq(Qr)/h]q$'(r) dr f F(z) dz 

27r ll JLen q OM)-(t) JlnY (Z t) sin[7rq$(z)/h] 

+ 1 sin[7rq$(T)/h]q'(,T) dT F(z) dz 

Jln JLen q(t) - q$Qr) (z - t) sin[irq$(z)/h] f 
In the last integral in (B.12) we interchanged the order of integration, which is 

possible, since by (B.9), kk(z) - q$(r)I > min(h/3,Y) > 0 for all z E Iny and all 

r E Ln. Making a change of variables and letting E go to zero in (B.12), we obtain 

1f F(r)dr 
n 

F(Zk) h(-i)k 1 i Nn )sin[7rz/h] sin[7rz/h] d 
ri Jn 'r -t k-n )q'(Zk) ri(t- Zk) )r Nn z- 0(t) x- khf 

(B.13) = ji 1 { Nn sin[7rz/h]dz j F(z)/dz 
27r 7r T Nn X (t)(t) Jny (Z - t) sin[7ro;(z)/h] 

1 [Nn Sin [7rx/h] dx F(z) dz 

Jl Yr O -n C(z) -x (z -t) sin[7r ;(z)/h] I 
where Nn = (n + 1/3)h. 

Now we let n approach ox and analyze (B.13). On the left-hand side we introduce 

1 (o Lf Nn sin[7x/h] dx 

(B.14) n0 Nn 

= (p - 
n sin[7rx/h] dx 6nk 

7r ( o -N ~ ) - kh 

where in the second expression in (B.14), k = -n(l)n. Clearly, 

(B.15) lim 5?n = 0, 

but more importantly, it can be shown that 

(B.16) lim max I6n,kI = 0, 
n1--+o -n/2<k~n/2 
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and also that there exists a constant Ci > 0 such that 

(B. 1 7) max I6nkl < C1 as n r oo. -n<k<n 

Using (B.14), the identity 

(B.18) f sin[irz/h] d 7r cos(lrx*/h) for x* E R, 
-00 X X 

and the definition of tk(Z), the left-hand side of (B.13) can be rewritten as 

(B.19) - - -: _F(Zk)tk(t) + Ad - )n,k) 
Ji ZnFZktk )t E /i'(Zk) iri(t - Zk) 

It follows now from (B.15)-(B.17) and (5.5) that as n -* oo the expression (B.19), 
and hence the left-hand side of (B.13), becomes 

(B.20) SF(t) - E3 F(Zk)tk(t). 

kEZ 

Now we turn to the right-hand side of (B.13). Since I sin[7rq$(z)/h]l > V3-/2 for 
all z E12 y it follows from (B.18), the definition of ln,y in (B.9), (4.3), (4.5) and 

(4.6) that as n -* o0 the first term on the right-hand side of (B.13) approaches 

(B.21) -- cos[7rq$(t)/h] F(z) dz 
2wr JI(Ly) (z - t) sin[irq$(z)/h] 

Thus, it only remains to consider the second term on the right-hand side of (B.13). 
It can be shown that there exists a constant C2 > 0 such that for all z E12 

(B.22) Nn sin[0rz/h]z ? _ 2, 

uniformly as n -* oc. Hence it follows by the same argument as the one used above 
that the part of the integral corresponding to 12 vanishes as n -* oc. Let us 
rewrite the contribution from I' as follows: 

(B3.23) Xn q$1Ly q$(z)-[7r/ dxz z)d 
273 fI XnY y N O /z (z - t) sin[7rO(z)/h]' 

where Xn,Y in (B.23) is the characteristic function of 1Iny. Similarly to the case of 
(B.22), it can now be shown that there exists a constant C3 > 0 such that for all 
z E qY'(Ly), 

(B.24) /n sin[7rz/h] dz |< C, 

uniformly as n -* o0. Therefore, from (B.24), Lebesgue's dominated convergence 
theorem and the identity 

(B.25) sin[r/h]dz = 7rexp[(i7rz/h)sgn Im z], z E C\R, 
-00 

it follows that as n -* 0o the expression (B.23) approaches 

(B.26) i exp[(i7rq$(z)/h)sgn Im q$(z)]F(z) dz 
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Finally, combining all results from (B.20), (B.21) and (B.26), we obtain 

SF(t) -E F(Zn)tn (t) 

(B.27) = [1 F(z){exp[(i7rq$(z)/h)sgnlImq(z)] -cos[7rq$(t)/h]}dz 
27r Jo'(Ly) (z - t) sin[irq(z)/h] 

The error bound (5.8) now follows from (B.27) by bounding the contour integral, 
taking the lim infiyxd- and making use of the inequality 

(B.28) I sin[7rob(z)/h] I > sinh 1 7rY/hI, z E 0i- 1 (Ly ) 

The proof of Theorem 5.2 for the case when (5.6) is satisfied instead of (5.5) is 
similar, and we will not give it in detail. We only note in this case that by the 
first inequality in (B.5) and the estimate (5.4), the expression in (B.19), i.e., the 
left-hand side of (B.13), approaches the limiting form (B.20) as n -* 00. This again 
yields (B.27), from which we obtain the estimate (5.8) as above. El 
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